
D6.5: PROTOTYPES COMPANION REPORT

Michela ANGELI (UNITN), Arnaud FONTAINE (INR), Olga GADYATSKAYA (UNITN), Eduardo LOSTAL

(UNITN), Fabio MASSACCI (UNITN), Isabelle SIMPLOT-RYL (INR)

Document Information

Document Number D6.5
Document Title Prototypes companion report
Version 1.0
Status Final
Work Package WP6
Deliverable Type Prototype
Contractual Date of Delivery M36
Actual Date of Delivery M36
Responsible Unit INR
Contributors INR, UNITN
Keyword List Verification, prototype, on-device
Dissemination PU

Document change record

Version Date Status Author (Unit) Description
0.1 2011/11/30 Working draft A. Fontaine (INR) First version
0.2 2011/12/08 Working draft A. Fontaine, I. Simplot-Ryl

(INR)
Added description of the
EVE-TCF prototype

0.3 2011/12/26 Working draft O. Gadyatskaya, E. Lostal,
F. Massacci (UNITN)

Added description of the
S×C prototype, struc-
tured Section Introduc-
tion tentatively

0.4 2011/12/27 Working draft A. Fontaine (INR) Added introduction, con-
clusion and executive
summary

0.5 2011/12/29 Working draft O. Gadyatskaya (UNITN) Modifications to chap-
ter on S×C prototype
and appendix, new
appendix on Java
Card added, minor
changes to the introduc-
tion/conclusion

0.6 2011/12/29 Working draft A. Fontaine, I. Simplot-Ryl
(INR)

Typos, layout

0.7 2012/01/24 Working draft M. Angeli (UNITN),
A. Fontaine (INR)

First quality check
completed-minor re-
marks

1.0 2012/01/31 Final version A. Fontaine (INR), O. Gady-
atskaya (UNITN), M. Angeli
(UNITN)

Second quality check
and finalization

D6.5 Prototypes companion report | version 1.0 | page 2 / 39

Executive summary

During the two first years of the SecureChange project, the on-device verification part of WP6
has proposed four models for on-device information protection (D6.3 and D6.4), focusing on strongly
constrained devices such as smart-cards. During the last year of the project, two of these models
have been implemented and applied to the realistic POPS case study scenario. The deliverable D6.5
describe these implementations and discuss their integration in a legacy environment: JavaCard 2.x
smart cards with GlobalPlatform.

D6.5 Prototypes companion report | version 1.0 | page 3 / 39

D6.5 Prototypes companion report | version 1.0 | page 4 / 39

Index

Document change record 2

Executive summary 3

Introduction 7

1 EVE-TCF : Transitive Control Flow Prototype for Smart Cards 9
1.1 Overview of EVE-TCF . 9

1.1.1 From development to deployment of JavaCard applications 9
1.1.2 Considerations for on-device integration . 11

1.2 Off-device embedding of transitive control flow policies 11
1.2.1 The DSL language for transitive control flow policies 11
1.2.2 The convert tool . 14
1.2.3 The TCF component . 14

1.3 On-device verification of embedded policies . 15
1.3.1 Installation of a new package . 17
1.3.2 Removal of an installed package . 17

1.4 On-device management of policies . 18
1.5 The POPS case study . 20

2 The Security-by-Contract Prototype 23
2.1 An Overview of the SxC Prototypes . 23

2.1.1 Embedding Contracts . 23
2.1.2 The S×C Workflows on Device . 24

2.2 The S×C Embeddable Prototype Architecture . 25
2.2.1 The Claim Checker Algorithm . 25
2.2.2 The On-card Policy Store . 26
2.2.3 The Policy Checker . 27

2.3 The Prototype for Testing . 27

Conclusion 29

A The Device Architecture 31

B The Security-by-Contract Prototype Details 33
B.1 Embedding Contracts . 33

B.1.1 Application Contract . 33
B.1.2 The Contract Delivered on the Card . 34
B.1.3 Contract Population . 34

B.2 An Example . 35
B.3 Using the S×C Prototype for Testing . 36

D6.5 Prototypes companion report | version 1.0 | page 5 / 39

D6.5 Prototypes companion report | version 1.0 | page 6 / 39

Introduction

This document is the companion report of the prototypes deliverable D6.5 for on-device information
protection. The purpose of this report is to explain the implementations of the transitive control flow
model and the security by contract model (see deliverables D6.3 and D6.4) developed in WP6 of the
Secure Change project. These prototypes have been especially designed to fit the requirements of
JavaCard 2.x smart cards, the target devices of the POPS case study of the project, but also the most
constrained devices of the whole project.

In collaboration with our industrial partner Gemalto/Trusted Labs, we early agreed on some
architecture for concrete integration on card. Gemalto/Trusted Labs provided a set of API, called apiobc
for mandatory interactions with the operating system, and we suggested a non-invasive way to store
meta-data on-device thanks to a JavaCard applet. The architecture of a real platform is overviewed in
Appendix A and it serves as a reference for discussions of the prototype integration.

Integration of each prototype on target devices as well as application to the POPS case study
are detailed in Chapter 1 for EVE-TCF , the transitive control flow prototype, and in Chapter 2 for
S×C, the Security-by-Contract prototype developed for the direct control flow control. Both prototypes
have been released to the industrial partner Gemalto/Trusted Labs for evaluation on an actual JCRE
(PC simulator or/and real integrated circuit). The prototypes are expected to be evaluated in terms of
memory footprint and compliance with the JCRE. Extensive functional testing of the prototypes was
conducted by INR-Lille and UNITN.

D6.5 Prototypes companion report | version 1.0 | page 7 / 39

D6.5 Prototypes companion report | version 1.0 | page 8 / 39

1. EVE-TCF : Transitive Control Flow Prototype
for Smart Cards

The purpose of this chapter is to describe EVE-TCF , the implementation for JavaCard smart card with
GlobalPlatform of the transitive control flow model (see Chapter 4 of the deliverable D6.3 and Chapter
3 of the D6.4). EVE-TCF is a prototype that demonstrates the practicability of the transitive control flow
model on highly constrained devices that are smart cards. EVE-TCF has been released to industrial
partners (Gemalto/Trusted Labs) for concrete evaluation purposes such as CPU consumption and
volatile/persistent memory usage in a real environment.

1.1 Overview of EVE-TCF

Basically, EVE-TCF is a set of three executables:

• convert to convert and to embed transitive control flow policies written in a simple DSL language
as a Custom Component, called the TCF component, into CAP files;

• extract to extract the content of the TCF component of a CAP file and to output it as a transitive
control flow policy written in the DSL language;

• simu to simulate (off-device) the on-device (un)loading process of CAP files and the management
of GlobalPlatform security domains (creation, deletion).

The simu executable integrates the verification procedure at loading-time of control flow policies,
as it is depicted in the deliverables D6.3 and D6.4. This executable is actually a rough environment
to test the code responsible for the verification of control flow policies devoted to be integrated in the
smart card operating system by Trusted Labs/Gemalto. It permits easier off-device experiments, as
well as pre-deployment experiments by application vendors.

EVE-TCF is released with a JavaCard package containing the applet IFCInstallerApplet re-
sponsible for storing repositories of control flow policies on-device. Interactions between the on-device
verifier written in C and the IFCInstallerApplet are described in Section 1.3.

EVE-TCF is also released with an Eclipse plugin to permit an easy use of its core executables.
This plugin permits easy detection of exceptions to control flow policies directly from Eclipse GUI
environment, and incremental syntax-coloring of both the DSL language for control flow policies and
the DSL language for simulation scripts.

1.1.1 From development to deployment of JavaCard applications

The Figure 1.1 displays the process to generate, from Java source code, a JavaCard application(s)
package (i.e. CAP file) with embedded transitive control flow policies ready to be deployed. The gray
steps are the “normal” steps of the JavaCard development process, while the green step corresponds
to the new additional mandatory step that embeds a control flow policy (.tcf file(s)) in the application(s)
package. The “normal” steps are not changed, thus standard tools from the SDK can be used, so as

D6.5 Prototypes companion report | version 1.0 | page 9 / 39

home-made tools as long as they produce a CAP file compliant with the JCVM 2.x specifications. The
generated CAP file must then be submitted with its control flow policy to the convert of EVE-TCF that
produces a CAP file with the TCF component. Some deployment strategies also involve an additional
signing step of CAP files to ensure their integrity and their origin. In this case, the signing operation
must be completed on the CAP file generated by convert of EVE-TCF .

*.tcf

Embedding policies
convert EVE-TCF

.cap

.cap*.class
Conversion

convert JavaCard

Compilation
javac

*.java

Figure 1.1: Schema of the off-device process for the development of JavaCard applications. The green parts of the process
correspond to the steps introduced by the use of EVE-TCF .

The TCF component is fully compliant with the formatting rules of the CAP file format described
in the JCVM 2.x specifications. It can thus be deployed on smart cards with EVE-TCF verification
code integrated, but also on other smart cards where the TCF component will simply be ignored. The
Figure 1.2 displays the deployment steps of a JavaCard application(s) package. The gray steps are
the “normal” steps of the JavaCard deployment process, while the green steps correspond to the new
additional mandatory steps to verify control flow policies. The “normal” steps are not changed, so that
the impact on existing JCVM implementations and smart card operating systems is very limited. In the
implementation of EVE-TCF for SecureChange, the verification step of control flow policies has been
developed to occur after the complete on-device loading of the CAP file, so that all its components can
be accessed in random way (i.e. not linearly at each loading of CAP file chunk), and before its linking
with already loaded code, in order to avoid rewriting of invoke instructions and code optimization that
could lead to incomplete and/or erroneous verification.

The Figure 1.2 also depicts the steps for removal of an installed package. The gray steps are the
normal steps of package removal, and the green step corresponds to the new additional mandatory
step to update the repositories of control flow policies managed by EVE-TCF on package removal.
In the implementation for SecureChange, the smart card operating system first decides if a package
can be removed, then it notifies EVE-TCF of the upcoming removal and finally commits the removal.
When EVE-TCF is notified, it updates its repositories of control flow policies in an irreversible way, as
described in the deliverables D6.3 and D6.4.

Removed

Linking Runnable
Verification

.cap

Loading
verif EVE-TCF

Removable
Policies update

EVE-TCF

Figure 1.2: Schema of the on-device process for the deployment of JavaCard applications. The green parts of the process
correspond to the steps introduced by the use of EVE-TCF .

D6.5 Prototypes companion report | version 1.0 | page 10 / 39

1.1.2 Considerations for on-device integration

In practice, the removal of an installed package on JavaCard 2.x is possible if and only if no other
installed package depends on it. In addition, it is not possible to install some package with unsolved
dependencies. These features strongly simplify the implementation of the transitive control flow model
presented in the deliverables D6.3 and D6.4. Actually, only one repository is needed on-device for
storing control flow policies, and policies update on removal of an installed package simply consists in
removing its the control flow policy from the repository without any code or policies reverification.

As requested by the industrial partner, the on-device verifier allows to consider some installed
packages as safe and will not try to verify control flow policies on the classes, interfaces and
methods they define. Concretely, this is implemented in EVE-TCF by setting up a threshold
(NO_POLICY_FOR_PACKAGE_INDEX_LT variable fixed at compilation-time) on internal package identi-
fiers managed on-device by the JCVM. As result, the invocation, as well as overriding and redefinition
of control flow policy, of a method defined in a safe package is not submitted to control flow policy
check.

1.2 Off-device embedding of transitive control flow policies

Control flow policies are expressed using a DSL (Section 1.2.1). The convert tool (Section 1.2.2)
translates policies written in this language into a TCF component (Section 1.2.3) suitable to embedded
into the CAP file containing the corresponding code. Basically, the convert tool takes as inputs a
control flow policy and a CAP file, and produces a new CAP file containing the same content as the
input one plus the new TCF component. The Directory component is also updated to reflect this
change, as requested by the CAP file format of the JCVM specifications.

1.2.1 The DSL language for transitive control flow policies

The DSL for describing transitive control flow policies is very simple and flexible. The complete BNF
grammar of this language is given in Figure 1.3.

Domains aliases

The user can define textual aliases corresponding to sets of security domains (at least one per alias)
given their corresponding AIDs using the following syntax,

/* an alias to one domain */
domain AliasDomain1 { 0:1:2:3:4 }

/* an alias to two domains */
domain AliasDomain2 { 0x0:0x1:0x2:0x3:0x4, AliasDomain1 }

where characters { and } are optional. The prefix 0x is also optional: all values in AIDs are assumed
to be hexadecimal values. As it is shown in this example, comments in the language are starting with
/* and are ending with */. Comments can contain any character, including the newline character, as
well as nested comments.

Policy of methods

EVE-TCF relies on fully qualified names of classes, interfaces and methods, but also on (classes,
interface and method) tokens, as described in the JCVM specifications, to designate classes, interfaces
and methods. For methods defined in a package to “annotate”, at least fully qualified names should
be used as they are non-ambiguous and less subject to changes across (re-)compilations and/or
evolution of the source code; tokens are only mandatory to designate methods, classes or interfaces
inherited from other packages, or to provide a complete policy that can be transmitted to a third party
that will use the package.

D6.5 Prototypes companion report | version 1.0 | page 11 / 39

<policy> ::= "package" <java_fqn> <policy>
| "domain" <domain_alias> <domain_list> <policy>
| "class" <class_policy> <policy>
| "interface" <class_policy> <policy>
| ""

<class_policy> ::= <opt_token> <java_fqn> "{" <method_list> "}"

<method_list> ::= <opt_static> <method_policy> <method_list> | ""

<opt_static> ::= "static" | ""

<method_policy> ::= <token> ":" <policy_content> <semicolons>
| <opt_token> <java_method> <opt_java_desc> ":" <policy_content> <semicolons>

<policy_content> ::= <domain_list> | "*" | "top" | "all" | "any" | ""

<domain_list> ::= <domain_list_aux> | "{" <domain_list_aux> "}"

<domain_list_aux> ::= <aid_or_alias> <separators> <domain_list_aux>
| <aid_or_alias>

<semicolons> ::= ";" <semicolons> | ";"

<separators> ::= "," <separators> | ","

<aid_or_alias> ::= <aid> | <domain_alias>

<aid> ::= <byte> <aid_colon> | <byte> <aid_string>

<aid_colon> ::= ":" <byte> <aid_colon> | ""

<aid_string> ::= " " <byte> <aid_string> | ""

<opt_token> ::= <token> | ""

<token> ::= "0x" <one_or_two_hexa>

<byte> ::= "0x" <one_or_two_hexa> | <one_or_two_hexa>

<one_or_two_hexa> ::= <hexa> | <hexa> <hexa>

<hexa> ::= "a" | "b" | "c" | "d" | "e" | "f" | <numeric>

<java_fqn> ::= <java_name> <java_fqn_aux>

<java_fqn_aux> ::= "." <java_name> <java_fqn_aux>
| "/" <java_name> <java_fqn_aux>
| ""

<java_method> ::= "<init>" | <java_name>

<opt_java_desc> ::= "(" <opt_java_desc_aux> ")" <java_desc_aux> | ""

<opt_java_desc_aux> ::= <java_desc_aux> | ""

<java_desc_aux> ::= <java_desc_aux_char> <java_desc_aux>
| <java_desc_aux_char>

<java_desc_aux_char> ::= <alpha_> | <numeric> | "/" | "." | ";"

<java_name> ::= <alpha_> <java_name_aux>

<java_name_aux> ::= <alpha_> <java_name_aux> | <numeric> <java_name_aux> | ""

<domain_alias> ::= <java_name>

<alpha_> ::= "a" | "b" | ... | "z" | "_"

<numeric> ::= "0" | "1" | ... | "9"

Figure 1.3: BNF grammar of the DSL language for transitive control flow policies.

D6.5 Prototypes companion report | version 1.0 | page 12 / 39

CAP files submitted to EVE-TCF tools must embed the Debug component in order to perform
classes/interfaces/methods names resolution. Output CAP files do not embed the Debug component
unless it is specified to the convert tool by the option --keep-debug.

The following syntax permits to define control flow policies of the method debit of the interface
IEPurseService defined in the package com.gemalto.securechange.epurse:

package com.gemalto.securechange.epurse
domain TransportDomain 0:1:2:3:4
interface IEPurseService {

debit : TransportDomain;
}

Note that the security domain where the code will be installed is implicitly added to all policies, so it is
not mandatory to mention it. Of course, a control flow policy can be empty (no AID or alias).

The package instruction permits to simplify interface or class definitions, but is not mandatory.
Fully qualified names can be used directly, which in this example gives:

interface com.gemalto.securechange.epurse.IEPurseService {
debit(S)V : TransportDomain;

}

The method description can be omitted if and only if it is not overloaded (i.e. other methods with
same name but different descriptions). As it is the case in the previous example, we can simply write:

interface IEPurseService {
debit : TransportDomain;

}

Class, interface and method tokens should be given in control flow policies if and only if both the
class and the method tokens are not 0xff, but this is not mandatory. These tokens are however
mandatory if they refer to methods defined outside the analyzed package as these class, interface and
method names are not embedded in the Debug component. Below is the previous example where
tokens are given:

interface 0x0 IEPurseService {
0x0 debit : TransportDomain;

}

As static methods of classes have their own tokens namespace, it is mandatory to use the static
keyword to designate a static method, even if you don’t specify its token value:

class 0x1 EPurseService {
static <init>(Lcom/gemalto/securechange/epurse/EPurseApplet;)V : ;

}

By default, when the policy of a method is not given, the convert tool tries to inherit the policy of
the super method (if it exists), or from an interface (if the method is the implementation of a method’s
interface). If no policy is found for it, the tool will infer the smallest control flow policy that satisfies
policies of callers and callees, according to the call graph of the package.

There exists a special definition for the control flow policy of a method that permits it to be called
from any domain. Instead of a set of AIDs (or aliases), one of the following equivalent symbols can be
used to specify the any domain policy:

* top all any

D6.5 Prototypes companion report | version 1.0 | page 13 / 39

1.2.2 The convert tool

As described in the Section 1.1.1, the convert tool of EVE-TCF requires two input files:

• the CAP file (ex: input.cap) to analyze, including the Debug component to permit resolution of
classes, interfaces and methods names;

• a policy file (ex: policy.tcf) written in the DSL language described in the Section 1.2.1 that
contains the control flow policy to be attached to the methods of the classes and interfaces
defined in the CAP file.

Given these input files, the convert tool produces a new CAP file (ex: output.cap) with the same
content plus the TCF component (Section 1.2.3) thanks to the following command:

convert --policy policy.tcf --output output.cap input.cap

The above command shows the two mandatory command line parameters to be specified, but
convert admits other optional parameters:

• --compress compresses entries in the output CAP file using the ’deflate’ routine (default is no
compression, i.e. ’store’);

• --keep-debug copies the Debug component of the input CAP file in the output CAP file (default
is no);

• --override overrides the output CAP file if it already exists (default is error if the output CAP file
already exists);

• --lazy disables the check of policies consistency (inheritance, overriding, invocation) within the
package (default is enabled);

• --system-policy spolicy.tcf admits that spolicy.tcf is the control flow policy of the API
and external classes and interfaces, which is especially useful to properly deal with inheritance
and overriding rules;

• --system-calls in combination with the --system-policy parameter or --top parameter, takes
into account the policies of external classes to infer implicit control flow policies of methods
defined in the analyzed package (default is to ignore them)

• --top the any domain policy is set by default to external methods without a policy explicitly given.

1.2.3 The TCF component

The TCF component component embedded in CAP files by the convert tool of EVE-TCF is a Custom
Component of the CAP file format (see JCVM 2.x specifications) with the data structures displayed on
Figure 1.4. The fields of those structures have the following meaning:

• the tcf_component structure describes a TCF component:

– tag contains the value of TRANSITIVE_CONTROL_FLOW_TAG_CUSTOM_COMPONENT (250), which
permits to identify the TCF component;

– size indicated the number of bytes in the tcf_component structure, excluding the tag and
size items. The value of the size field must be greater than 0;

– domains_count represents the number of entries in the domains field;

– domains contains all the security domain AIDs mentioned in control flow policies that
reference this field;

D6.5 Prototypes companion report | version 1.0 | page 14 / 39

– class_policies_count represents the number of entries in the class_policies field;

– class_policies contains a class_policy entry for each class and each interface defined
in this package;

• the cap_class_policy structure describes the control flow policy of a class or an interface:

– classref contains the location (i.e. the offset) in the Class Component (see JCVM spec-
ifications) of the info structure corresponding to a class (or an interface) defined in this
package;

– class_token represents the class token of the current class (or interface), or 0xFF if the
current class (or interface) has no token assigned;

– method_policies_count represents the number of entries in the method_policies field;

– method_policies maps to each method of the current class (or interface) its control flow
policy;

• the cap_method_policy structure describes the control flow policy of a method:

– bitfield is mask of modifiers used with a method with the following meaning:
Mask 0x80 0x40 0x20
Value 0x80 is visible 0x40 is implemented 0x20 is static

0x00 is not visible 0x00 is abstract 0x00 is not static

– method_token represents the static method token or virtual method token or interface
method token of this method if the method is visible according to bitfield;

– method_offset represents a byte offset into the info item of the Method Component (see
JCVM specifications) if the method is implemented (i.e. not an abstract method or a method
definition in an interface) according to bitfield;

– authorized_count represents the number of entries in the authorized field;

– authorized contains indexes in the domains field of the tcf_component structure corre-
sponding to the AIDs of security domains authorized to call directly or transitively this
method;

• the aid structure describes an ISO AID:

– length gives the number of bytes (from 5 to 16 included) in the value array;

– value contains the ISO AID (see JCVM specifications) of a GlobalPlatform security domain.

1.3 On-device verification of embedded policies

On-device verification of control flow policies embedded in TCF component requires two modifications
of the smart operating system/JCVM: a first one to trigger the verification at installation of new
package (Section 1.3.1), and a second one to trigger update of repositories of policy on package
removal (Section 1.3.2). The prototype version of EVE-TCF released to industrial partner does
not implement modification of control flow policies on-device, and relies on the JavaCard applet
IFCInstallerApplet to store repositories of policies. The main purpose of the two following sections
is to explain how the operating system/JCVM interacts with the EVE-TCF verifier (native code) and
the IFCInstallerApplet (JavaCard 2.x code) at installation-time of a new package (Section 1.3.1)
and at removal-time (Section 1.3.2).

D6.5 Prototypes companion report | version 1.0 | page 15 / 39

tcf_component {
u1 tag;
u2 size;
u1 domains_count;
aid domains[domains_count];
u1 class_policies_count;
cap_class_policy class_policies[class_policies_count];

}

cap_class_policy {
u2 classref;
u1 class_token;
u2 method_policies_count;
cap_method_policy method_policies[method_policies_count];

}

cap_method_policy {
u1 bitfield;
u1 method_token; /* present according to bitfield */
u2 method_offset; /* present according to bitfield */
u1 authorized_count;
u1 authorized[authorized_count];

}

aid {
u1 length;
u1 value[length];

}

Figure 1.4: Data structures of the TCF component.

D6.5 Prototypes companion report | version 1.0 | page 16 / 39

1.3.1 Installation of a new package

After a new CAP file is uploaded on-device, it must then be installed if and only if it is successfully
checked by the EVE-TCF on-device verifier. The verification of a freshly uploaded package not yet
installed follows the following steps also described on Figure 1.5:

1. the system calls the get_policy method of the IFCInstallerApplet to copy the repository of
control flow policies of already installed packages in the APDU buffer at offset CDATA (see
ISO7816);

2. if the copy succeeds (returns a non-null positive integer), the system calls the

verif_transitive_control_flow

function that processes the verification of the last loaded cap relying on APDU buffer content
as its repository of verified policies; the verification uses a volatile RAM buffer of 255 bytes
on-device to store temporary data that can be erased when verification is over;

3. if the verification succeeds (returns a non-null positive integer), then new package policy is
stored by the verification procedure in the APDU buffer at the offset given in parameter;

4. the system calls the update_policy method of the IFCInstallerApplet that will add the new
control flow policy to the repository of verified policies;

5. the TCF component is now useless and can thus be dropped be the system.

IFCInstallerApplet

verif_transitive_control_flow(cap, policy)

(status, ∆policy)

update_policy(∆policy)

status

policy

get_policy()

verif.c

EVE-TCF

GlobalPlatform
JavaCard

install(cap)

status

Figure 1.5: Schema of the on-device verification process at installation of a new package.

1.3.2 Removal of an installed package

As described in Section 1.1.2, implementation of package removal is straightforward for the targeted
JavaCard 2.x device. It simply consists in removing the control flow policies related to the removed
package once the system is sure no other package depends on it. In this case, the removal of package
policies cannot fail, and only involves the IFCInstallerApplet, as depicted on Figure 1.6.

D6.5 Prototypes companion report | version 1.0 | page 17 / 39

remove(package)

EVE-TCF

remove_policy(package)

GlobalPlatform
JavaCard

IFCInstallerApplet

Figure 1.6: Schema of the on-device verification process at removal of an installed package.

1.4 On-device management of policies

Verified control flow policies of installed packages are stored on-device in repositories which structure is
given on Figure 1.7. This structure is very similar to the one used in the TCF component (Section 1.2.3),
except that method policies are now stored in a binary format, as described in the deliverable D6.3.

binary_repositories {
u1 domains_count;
u2 domains_size;
aid domains[domains_count];
u1 package_policies_count;
binary_package_policy package_policies[package_policies_count];

}

binary_package_policy {
u1 package_index;
u2 class_policies_size;
binary_class_policy class_policies[];

}

binary_class_policy {
u2 classref;
u1 class_token;
u2 method_policies_size;
binary_method_policy method_policies[];

}

binary_method_policy {
u1 bitfield;
u1 method_token; /* present according to bitfield */
u2 method_offset; /* present according to bitfield */
u1 policy;

}

Figure 1.7: Data structures of the control flow policies stored on-device.

The fields of the data structures displayed on Figure 1.7 have the following meaning:

• the binary_repositories structure describes a set of binary repositories of control flow policies:

– domains_count represents the number of entries in the domains field;

– domains_size represents the size in bytes of the domains field;

D6.5 Prototypes companion report | version 1.0 | page 18 / 39

– domains contains all the security domain AIDs mentioned in control flow policies of this
repository;

– package_policies_count represents the number of entries in the package_policies field;
– package_policies contains a package_policy entry for each package installed1;

• the binary_package_policy structure describes the control flow policy of a method:

– package_index contains the internal package index of the current package;
– class_policies_size represents the size in bytes of the class_policies field;
– class_policies maps to each class (or interface) of the current package its control flow

policy;

• the binary_class_policy structure is used to describe the control flow policy of a class or an
interface:

– classref contains the location (i.e. the offset) in the Class Component (see JCVM spec-
ifications) of the info structure corresponding to a class (or an interface) defined in this
package;

– class_token represents the class token of the current class (or interface), or 0xFF if the
current class (or interface) has no token assigned;

– method_policies_size represents the size in bytes of the method_policies field;
– method_policies maps to each method of the current class (or interface) its control flow

policy;

• the binary_method_policy structure describes the control flow policy of a method:

– bitfield is mask of modifiers used with a method with the following meaning2:
Mask 0x80 0x40 0x20
Value 0x80 is visible 0x40 is implemented 0x20 is static

0x00 is not visible 0x00 is abstract 0x00 is not static
Mask 0x03
Value 0x00 repository of verified policies (rules repository in the model)

0x01 repository of verified policies of methods in packages with un-
solved dependencies (ruleswait repository in the model)

0x02 repository of minimal expected policies of methods not yet in-
stalled (unsolved repository in the model)

– method_token represents the static method token or virtual method token or interface
method token of this method if the method is visible according to bitfield;

– method_offset represents a byte offset into the info item of the Method Component (see
JCVM specifications) if the method is implemented (i.e. not an abstract method or a method
definition in an interface) according to bitfield;

– policy contains the bit-wise encoded policy of the current method where each bit of the
seven highest bits corresponds to a security domain (a bit set to 1 means the domain is
authorized) and the lowest bit encodes the special >.

The binary encoding of a policy relies on domain indexes in the domains field of the binary_repository
structure. If a method is authorized to be called from the i-th domain referenced in the domains struc-
ture, then its policy field has the bit masked by the value 2i is set to 1.

This encoding on one byte allows to deal with up to seven different security domains on-device,
which is enough for the targets of the SecureChange project. The size of the policy field can easily
be increased for other targets where more security domains can exist.

1Only non-safe packages have a control flow policy (Section 1.1.2).
2Only one repository is used in this prototype (Section 1.1.2).

D6.5 Prototypes companion report | version 1.0 | page 19 / 39

1.5 The POPS case study

In the context of the SecureChange project, EVE-TCF prototype implementation of the transitive
control flow model is applied to the integrated scenario of the POPS case study presented in the
deliverable D6.6.

Figure 1.8 gives the control flow policies of the newepurse.cap, the neweidapplet.cap and the
newmypackage.cap packages. The policy of the newjticket.cap is actually empty as it does not
provide shared services to other packages. For this package, the default implicit policy (i.e. its methods
can only be called from the security domain in which it is installed) is sufficient and is automatically
infered by the convert tool.

package com/gemalto/securechange/newepurse

domain DomainOfMyApplet 1:2:3:4:5:6:7:0
domain DomainOfEidCard 1:2:3:4:5:6:7:8:0
domain TransportDomain 1:2:3:4:5:6:0

interface IEPurseServicesCredit {
charge : DomainOfEidCard;
transaction : DomainOfMyApplet;

}

interface IEPurseServicesDebit {
debit : TransportDomain, DomainOfMyApplet;

}

class EPurseServicesCredit {
static <init> : ;

}

class EPurseServicesDebit {
static <init> : ;

}
(a) Policy of the newepurse.cap package.

package be/fedict/neweidapplet

domain DomainOfMyApplet 1:2:3:4:5:6:7:0

interface INewEidPoints {
sharePoints : DomainOfMyApplet;

}

class NewEidPoints {
static <init> : ;

}
(b) Policy of the neweidapplet.cap package.

package newmypackage

interface INewMyAppletPoints {
sharePoints : ;

}

class NewMyAppletPoints {
static <init> : ;

}
(c) Policy of the newmypackage.cap package.

Figure 1.8: Control flow policies of packages of the POPS scenario for convert.

Table 1.1 gives the size (in bytes) of each package without the TCF component, the size of each
TCF component computed by the convert tool for the control flow policies given in Figure 1.8 and the
overhead of embedding each component in the original package.

Package
Size of the Size of the

Overhead
original package TCF component

newepurse.cap 4614 171 +3.7%
newjticket.cap 3262 41 +1.3%
neweidapplet.cap 11540 415 +3.6%
newmypackage.cap 4778 92 +1.9%

Table 1.1: Size of TCF components embedded in packages of the POPS scenario.

Figure 1.9 gives the simulation script for the simu tool corresponding to the deployment scenario of
the POPS case study. A security domain is created for each package just before its deployment, and
the content of on-device policies repositories is dumped as is after each package installation.

Figure 1.10 shows the output of the simu tool executed on the simulation script of Figure 1.9.
Table 1.2 gives the size (in bytes) of on-device policies repositories after each installation of a

package in the deployment scenario.

D6.5 Prototypes companion report | version 1.0 | page 20 / 39

create domain BankDomain 1:2:3:4:5:0
install package "newepurse_tcf.cap" in BankDomain

dump policy "BinaryComponentAfterNewEPurse.bin"

create domain TransportDomain 1:2:3:4:5:6:0
install package "newjticket_tcf.cap" in TransportDomain

dump policy "BinaryComponentAfterNewJTicket.bin"

create domain DomainOfEidCard 1:2:3:4:5:6:7:8:0
install package "neweidapplet_tcf.cap" in DomainOfEidCard

dump policy "BinaryComponentAfterNewEIDApplet.bin"

create domain DomainOfMyApplet 1:2:3:4:5:6:7:0
install package "newmypackage_tcf.cap" in DomainOfMyApplet

dump policy "BinaryComponentAfterNewMyApplet.bin"

Figure 1.9: Simulation script of the POPS scenario for simu.

Installed packages
Size of the

policies repositories
newepurse.cap 168
newepurse.cap + newjticket.cap 207
newepurse.cap + newjticket.cap + neweidapplet.cap 609
newepurse.cap + newjticket.cap + neweidapplet.cap + newmypackage.cap 699

Table 1.2: Size of on-device control flow policies repositories after each installation of a package of the POPS scenario.

D6.5 Prototypes companion report | version 1.0 | page 21 / 39

Initializing RAM buffer (800 bytes)...
Initializing default platform values...
Initializing applet data buffer (800 bytes)...
Initializing APDU buffer (800 bytes, content offset is 0x14)...
Initializing system packages and security domains...
Initializing security policy...

4 bytes -> 10 bytes
1 new domains
0 new package policies

Creating security domain BankDomain...

Selecting the domain BankDomain...
Parsing ’newepurse_tcf.cap’...
Importing 3 packages (GTO specific)...
Retrieving policy data from applet... 10 bytes
Verification of newepurse_tcf.cap...
Installing package in domain BankDomain...
Uploading policy data to applet...

10 bytes -> 168 bytes
4 new domains
1 new package policies

Creating security domain TransportDomain...

Selecting the domain TransportDomain...
Parsing ’newjticket_tcf.cap’...
Importing 3 packages (GTO specific)...
Retrieving policy data from applet... 168 bytes
Verification of newjticket_tcf.cap...
Installing package in domain TransportDomain...
Uploading policy data to applet...

168 bytes -> 207 bytes
0 new domains
1 new package policies

Creating security domain DomainOfEidCard...

Selecting the domain DomainOfEidCard...
Parsing ’neweidapplet_tcf.cap’...
Importing 6 packages (GTO specific)...
Retrieving policy data from applet... 207 bytes
Verification of neweidapplet_tcf.cap...
Installing package in domain DomainOfEidCard...
Uploading policy data to applet...

207 bytes -> 609 bytes
0 new domains
1 new package policies

Creating security domain DomainOfMyApplet...

Selecting the domain DomainOfMyApplet...
Parsing ’newmypackage_tcf.cap’...
Importing 5 packages (GTO specific)...
Retrieving policy data from applet... 609 bytes
Verification of newmypackage_tcf.cap...
Installing package in domain DomainOfMyApplet...
Uploading policy data to applet...

609 bytes -> 699 bytes
0 new domains
1 new package policies

Policy data size is 699 byte(s)

Figure 1.10: Simulation result of the POPS scenario with simu.

D6.5 Prototypes companion report | version 1.0 | page 22 / 39

2. The Security-by-Contract Prototype

In this chapter we overview the Security-by-Contract prototype that enforces direct control flow policies
on Java Card. The Security-by-Contract (S×C) approach for smart cards was introduced in D6.3 and
D6.4. In the current report we present the implementation details of the prototype and an example of
the S×C prototype applied to the WP6 running scenario.

The prototype exists in two versions: the embeddable S×C prototype and the testing S×C pro-
totype. The embeddable prototypes is fully compliant with the card implementation details shared
by Gemalto/Trusted Labs (presented in Appendix A) and it was shared with them for full industrial
evaluation. The testing prototype is a prototype developed by UNITN for testing and demonstration
purposes. It offers enhanced functionality over the embeddable prototype, because it enables the
functional dependencies verification between applications. The embeddable prototype does not
capture these dependencies explicitly because they are managed by the card independently from the
S×C prototype. We provide more details in Appendix B.

2.1 An Overview of the SxC Prototypes

The S×C prototypes consist of three main components: the SxCInstaller, the ClaimChecker and the
PolicyStore. The SxCInstaller is the main interface with the platform components, such as JavaStub
or the apiobc library. It also comprises the functionality of the PolicyChecker component of the S×C
framework. The ClaimChecker is the entity responsible for parsing the CAP files with the help of the
apiobc library, extracting the contract from the Custom component and matching it with the bytecode.
The SxCInstaller and the ClaimChecker are written in C. The PolicyStore component is responsible for
storing the security policy and maintaining it across the card sessions, it is written in Java Card.

2.1.1 Embedding Contracts

Prior to loading the application contract needs to be embedded into the CAP file. This is done by the
CAP File Modifier tool which has a user-friendly visual interface. This tool allows to create contracts,
store them in files and embed them into existing CAP files. The Contract Custom components of CAP
files are used as means to deliver contracts on the card. On the cards which are not equipped with the
S×C framework the Contract Custom components will simply be ignored and they will not affect the
functionality of the applications.

The S×C prototypes expects to receive a CAP file with the Contract Custom component, as we
deliver contracts embedded into CAP files. The standard Java Card Development Kit implemented
by Oracle does not support Custom components, so we have developed the CAP Modifier tool to
embed contracts into CAP files. The process of the off-card conversion prior to loading is depicted in
Figure 2.1. The white parts depict standard steps and tools in the Java Card application development.
The grey parts are the new steps of the development process. After applying the standard Java Card
tools (Compiler and Converter), the CAP Modifier tool takes as input already converted CAP file,
appends the Contract Custom component and modifies the contents of the Descriptor component (by
increasing the counter of the Custom components amount and specifying the length of the Contract
Custom component), so the card can recognize that the CAP file contains a Custom component.

D6.5 Prototypes companion report | version 1.0 | page 23 / 39

Figure 2.1: Embedding Contracts

Figure 2.2: Loading Process in Presence of S×C Framework

2.1.2 The S×C Workflows on Device

The S×C prototypes support the following types of change on the platform: loading of a package,
removal of a package and update of application policy of already loaded application package. As
requested by Gemalto/Trusted Labs we allow some packages to avoid the S×C verification process. It
is necessary because some packages have to be loaded by the smart card vendors after the card
issuance for card personalization purposes (for example, the GlobalPlatform library). These packages
are extensively verified within the smart card vendors premises and they are generally not needed to be
declared in the smart card policy. We avoid verification of these packages by setting a comilation-time
variable PrefixesToVerify and checking that the package requested for verification is within the specified
range of the AID prefixes.

Figure 2.2 presents the application loading process for the cards with the S×C integrated prototype
in a form of a sequence diagram. The grey components are the S×C components and the new steps in
the loading are colored in violet. If the device does not have the embedded S×C prototype integrated
these new steps are omitted.

The package removal process in presence of the embedded S×C prototype is presented in Fig-
ure 2.3. Again, the new verification steps are in violet. And Figure 2.4 presents the sequence diagram

D6.5 Prototypes companion report | version 1.0 | page 24 / 39

Figure 2.3: Removal Process in Presence of S×C Framework

Figure 2.4: Application Policy Update Process

for the application policy update. The PolicyStore component is a class in the Java Stub, thus the
terminal can contact the PolicyStore directly, once the new APDU command for the policy update is
established. The application policy update process is completely new, it does not exist for standard
Java Cards (because the access control policies to the services can only be embedded within the
application code, thus the application has to be deleted and reinstalled if any access control rule has
to be modified).

2.2 The S×C Embeddable Prototype Architecture

Figure 2.5 presents the Java Card architecture enhanced with the S×C framework. More details on
the Java Card architecture are available in Appendix A. We also present a brief summary on the
application contracts and more details on the contracts population in Appendix B.

2.2.1 The Claim Checker Algorithm

The ClaimChecker component is responsible for verification of the contract and the bytecode compliance.
Thus it has to establish that the services from ProvidesA exist in package A and the services from CallsA
are indeed the only services that A can try to invoke in its bytecode. The goal of the ClaimChecker
algorithm is to collect for each invokeinterface opcode the method index t and the Constant Pool

D6.5 Prototypes companion report | version 1.0 | page 25 / 39

Figure 2.5: The SxC Embeddable Prototype Architecture

index I, because the JCRE specification allows the context switches through the Firewall only by this
opcode. Then we can compare the collected set with the set Calls of the contract. We emphasize
that operands of the invokeinterface opcode are known at the time of conversion into a CAP file
and thus are available directly in the bytecode. All methods of the application are provided in the
Method Component of the application’s CAP file, an entry for each method contains an array of its
bytecodes. Exported shareable interfaces are listed in the Export component of the CAP file and
flagged in the Class component. The strategy for the ClaimChecker is to ensure that each service listed
in the Provides set is meaningful and no other provided services exist.

2.2.2 The On-card Policy Store

The PolicyStore is responsible for storing the security policy of the card. It needs to be organized
efficiently, so that the PolicyChecker algorithms are fast, but the space occupied by the security policy
data structures is small. We used the bit vectors format to store the policy data and to restrict the
number of applets and services admitted for loading. This restriction allows us to use the fixed size
format of bit vectors. Thus we have developed the prototype assuming up to 4 loaded applets at each
moment of time (the 5th will be rejected by the current implementation, but it is possible to free the
space by removing something loaded), each applet can provide up to 8 services.

The data structures that are maintained in the Policy Store are: Policy, Mapping, MayCallObj and
WishListObj. The Mapping object maintains a mapping between on-card S×C package identifiers
(from 0 to 10) and the AIDs of the application packages and a mapping between the on-card service
identifiers (from 0 to 7) and the service tokens (interface and method token)). The S×C package
identifiers are generally different from the local package identifiers that are assigned by the JCRE and
maintained by the card registry. This approach was chosen because it allows the S×C prototype to
assign the identifiers independently from the JCRE assignment of the local identifiers, thus it minimizes
the disclosure of the platform implementation details and the dependence of the S×C prototype on a
specific platform implementation, ensuring interoperability.

The Policy object is a set of byte arrays corresponding to the contract structure, the arrays contain
the data about provided and called services, the security rules and the functionally necessary services,

D6.5 Prototypes companion report | version 1.0 | page 26 / 39

all the applications and services are referenced by their on-card identifiers. The MayCallObj object
stores the data about authorizations for applications that are not loaded on the card and the WishListObj
object stores services that a loaded application tries to invoke, but they are not yet present on the card.
These two objects and the Mapping object are space-consuming, because they store the AIDs, but
they are used rarely with respect to the Policy object. The Policy object is used for the contract-policy
compliance checks, so a lot of bit vector operations can be applied to it. The Mapping, MayCallObj and
WishListObj objects are used only for contract transformation into internal format, when the delivered
Provides set is mapped into internal format and the services obtain the on-card identifiers, the delivered
sec.rules set is mapped into either a Policy security rules set or the MayCallObj object depending on
the AID of the trusted client, etc.

2.2.3 The Policy Checker

The PolicyChecker is the component responsible for contract-policy compliance checks. It needs
to retrieve the security policy of the card from the Policy Store and the received contract from the
ClaimChecker. The contract is then converted into the internal on-card format compliant with the
security policy structure. The PolicyChecker algorithms are applied to the Policy data structures and
the transformed contract. Intuitively, during loading of application B the PolicyChecker checks that (1)
for all the services from CallsB B is authorized by their providers to call them; (2) for all services from
ProvidesB all the applications that can invoke these services are authorized by B; (3) all the services
from func.rulesB are provided. We refer the interested readers to D6.3, D6.4 for more details.

2.3 The Prototype for Testing

The S×C prototype for testing comprises the same components: the SxCInstaller, the ClaimChecker and
the PolicyStore. However, it differs with the embeddable prototype in the following.

• The embeddable S×C prototype in fact does not make use of the functional dependencies among
applications. This is due to the fact that the JCRE implementation requires that all the imported
packages are present at the moment of application loading. If this is not the case, the application
is rejected. Similarly, a package imported by some applications on the card cannot be deleted.
Thus the JCRE executes the functional dependencies checks defined by the S×C approach prior
to the S×C framework invocation and therefore the S×C embeddable prototype relies on these
checks. The WishListObj object is not maintained by the embeddable prototype. The testing
prototype does not follow these restrictions and it performs the functional dependencies checks
as defined in D6.3, D6.4, thus it maintains the WishListObj object if a loaded package contains a
call to a package that is not (yet) loaded.

• After the first round of integration of the S×C prototype with an actual device the industrial
partner Gemalto/Trusted Labs concluded that the APDU buffer, previously defined as means for
Java Card-C components interactions, cannot be used during loading process. This required
a modification of the previously agreed architecture, where the PolicyStore was a dedicated
applet, to the new architecture, where the PolicyStore is a class in JavaStub. Since the main
goal of the testing prototype implementation was independent functionality testing, we did not
modify the testing prototype after the discovery that the APDU buffer solution does not work. The
communication means can be validated only on real industrial prototypes, because the full JCRE
implementation is not possible for the academia partners. We emphasize that the functionality
of the components of the S×C embeddable and testing prototypes is the same, except for the
functionally necessary services.

The architecture of the S×C testing prototype is depicted in Figure 2.6. For the purposes of
independent functionality testing we have implemented the apiobc library and the necessary Java Stub
functionality following the JCRE specifications.

D6.5 Prototypes companion report | version 1.0 | page 27 / 39

Figure 2.6: The SxC Testing Prototype Architecture

We present an overview of the S×C prototype testing using the integrated WP6 scenario in
Appendix B.

D6.5 Prototypes companion report | version 1.0 | page 28 / 39

Conclusion

The deliverable D6.5 consists of two prototypes for on-device information protection on JavaCard
smart cards. These prototypes implement the transitive control flow model (Chapter 1) and the
Security-by-Contract model (Chapter 2) introduced for the SecureChange project in the deliverables
D6.3 and D6.4.

The first round of integration of those prototypes with an actual device by the industrial partner
Gemalto/Trusted Labs concluded that the APDU buffer, previously defined as the mean to exchange
information between C code and Java code, cannot be used during loading process. Furthermore, the
APDU buffer also has a fixed size of 255 bytes which strongly limits communications. The off-device
simulators provided with our prototypes can easily bypass this limitation by increasing the size of the
APDU buffer, but this is not possible on-device. Lately, Gemlato/Trusted Labs suggested another
solution not relying on the APDU buffer, i.e. static class directly included in the Java Stub instead of an
applet, but we had no time to investigate and develop this proposal.

Whatever the concrete integration mean EVE-TCF and S×C prototypes will use, it will not alter the
main results achieved. Both prototypes have shown their ability to effectively deal with real application
code, and the feasibility of their integration in real smart cards.

D6.5 Prototypes companion report | version 1.0 | page 29 / 39

D6.5 Prototypes companion report | version 1.0 | page 30 / 39

A. The Device Architecture

Figure A.1: The Java Card Architecture.

In this chapter we briefly overview the Java Card architecture in order to ease the understanding of
the prototypes implementation and device integration perspectives.

Java Card is a technology enabling multi-application smart cards. In essence, the Java Card
technology brings a Java Virtual Machine on integrated circuits. Figure A.1 presents the Java Card
architecture. The main components are: an Integrated Circuit (“chip”), a Native Operation System
(Native OS) and the Java Card Run-time Environment. The JCRE comprises a Java Card Virtual
Machine (JCVM), a set of Java Card API, the JavaStub component and the Loader (the apiobc library
is a part of it).

The platform components are implemented in C or in Java Card. The Loader is implemented in C,
and the main components of the WP6 prototypes (EVE-TCF and the S×C prototype) are implemented
in C because they have to be integrated with the Loader. The Loader API comprises a set of functions
used to load applications (process the received file, perform the necessary checks, etc.).

Applications are written in Java Card and use the Java Card API. The JavaStub component is a
part of the Installer/Applet Deletion Manager components of the platform (not presented on Figure A.1).
It has to exhibit some functionality of applets (be selectable, for example) and it is implemented in Java
Card. The communication between some of the platform components is therefore hindered.

The WP6 prototypes need to allocate persistent modifiable memory (EEPROM) in order to store
the security policy/meta-data on the card. Only the Java Card components can allocate EEPROM,
but not the C components. Thus we had implement the Policy Store component in Java Card. The

D6.5 Prototypes companion report | version 1.0 | page 31 / 39

interactions between the C – Java Card components were initially organized through the APDU buffer.
The APDU buffer is a global byte array accessible for all applications and, theoretically, all components
of the JCRE. The prototypes explored 255 bytes length APDU buffer.

Java Card applications (also called applets) are delivered on a card in packages, that are converted
into CAP files. An applet developer writes an application in Java Card (subset of Java) then the
application is compiled into .class files and afterwards converted into a CAP (Converted APplet) file.
The Converter is an off-card part of the JCVM. The main purpose of the conversion is to reduce the
amount of memory needed for storing an applet. The structure of the CAP files are defined by the
Java Card specifications, thus the JCVM can process them in an optimized manner.

The application loading process includes the following steps. The JavaStub component is selected
on the card from a terminal and it is the entity responsible for loading, linking and installation. Upon
receiving a CAP file the Loader API is used to process the file and perform some checks defined by
the Java Card specification. Then the package can be linked and afterwards an application instance
can be created. At some point the application may no longer be needed. Then the JavaStub starts
the removal process. Upon performing the necessary checks, the application instances (if they exist)
and the package can be removed and the CAP file can be deleted from the memory (the application
removal process).

Java Card packages and applications can be uniquely identified by their AID (Application IDentifiers).
An AID is a byte array, it can be 5 – 16 bytes length. On the card the packages are referred to by their
local identifiers, these identifiers are assigned by the JCRE, which maintains (in the card registry) the
package AID – local identifier correspondence.

The apiobc Library

The apiobc library contains a set of the Loader functions and definitions of data types and constants
available on an actual device. The Loader functions access is essential for both prototypes, because
the CAP file contents access on device is organized through these functions. The apiobc library
contains functions that provider pointers to the beginning of each CAP file component and the length
of each component, including the Custom components carrying the application policy/contract. Other
functions of the apiobc library query the card registry and return the local package identifier for the
given AID, inform if the current CAP file was converted with the Java Card 2.1 Converter and give a
pointer to a temporary auxiliary buffer used to store the temporary date of the prototypes.

Gemalto/Trusted Labs have shared this library (function signatures and description) with INR-Lille
and UNITN.

The Applet Interactions

Applications are isolated on the card by the JCRE Firewall mechanism. The Firewall confines each
applet’s actions to the applet’s context. Each package has its own context, so objects can communicate
freely within the same package.

The JCRE allows only methods of Shareable interfaces (the interfaces extending javacard.−
framework.Shareable) to be accessible through the Firewall. If an application desires to share some
methods, it implements a Shareable interface. This application is called a server and the shared
methods are called services. An application that can try to call a service is called a client.

D6.5 Prototypes companion report | version 1.0 | page 32 / 39

B. The Security-by-Contract Prototype Details

Summary of the Chapter

In this chapter we give a short reminder on the S×C contracts and present the contracts population
in more details. We also present some details of the S×C functional testing on the integrated WP6
scenario.

B.1 Embedding Contracts

We remind that the S×C approach expects that each application will bring a contract that contains the
information on provided and called services and security policy of the application.

B.1.1 Application Contract

In order to make this report self-contained we now remind the structure of the application contracts
initially presented in D6.3 and D6.4.

Let A.s be a service s declared in a package A. The contract consists of two parts: a claim and a
policy. AppClaim specifies provided (Provides set) and invoked (Calls set) services. We say that the
service A.s is provided if applet A is loaded and service s exists in its code. Service B.m is invoked by
A if A may try to invoke B.m during its execution. The AppClaim will be verified for compliance with
the bytecode (the CAP file) by the ClaimChecker.

The application policy AppPolicy contains authorizations for services access (sec.rules set) and
functionally necessary services (func.rules set). We say a service is necessary if a client will not be
functional without this service on board. The AppPolicy lists applet’s requirements for the smart card
platform and other applications loaded on it.

Definition B.1.1 Let ∆A be a domain of applications and ∆S be a domain of services. AppClaimA of
an application A is a tuple 〈ProvidesA,CallsA〉, where ProvidesA⊆ ∆S is a set of the services A provides
on the card and CallsA⊆ ∆S is a set of services that A may call during its execution.

AppPolicyA of an application A is a tuple 〈sec.rulesA, func.rulesA〉, where a relation sec.rulesA ⊆
ProvidesA ×∆A defines which applications are authorized to use services of A, func.rulesA ⊆ ∆S is a
set of services functionally necessary for application A.

ContractA is a tuple 〈AppClaimA,AppPolicyA〉.

A service s can be identified as a tuple 〈A, I, t〉, where A is unique application identifier (AID) of
the package that provides the service s, I is a token for a shareable interface where the service is
defined and t is a token for the method s in the interface I. Further we will sometimes omit an AID A
and will refer to a service as a tuple 〈I, t〉.

Tokens are used by the JCRE for linking on the card in the same fashion as Unicode strings
are used for linking in standard Java class files. For externally visible elements, such as shareable
interfaces and their methods, tokens are declared in the Export file of the package. If applet A wants
to provide some services, it has to make its Export file available for all potential clients. Applet B in its

D6.5 Prototypes companion report | version 1.0 | page 33 / 39

source code refers to services by their Unicode string names, but when it is converted into a CAP file
these names are replaced with tokens from A’s Export file. Thus it is possible to identify provided and
called services in terms of tokens correctly and uniquely.

A functionally necessary service for applet A is the one which absence on the platform will crash A
or make it useless. For example, a transport application normally requires some payment functionality
to be available. If a customer will not be able to purchase the tickets, she would prefer not to install the
ticketing application from the very beginning.

An authorization for a service access includes the package AID of the authorized client (the format
of an authorization will be discussed further). The access rules have to be specified separately for
each service and each client that the server wants to grant access.

B.1.2 The Contract Delivered on the Card

Contracts can be delivered on the card within Custom components of the CAP files. Custom com-
ponents require to have a tag and an AID. We have defined the tag to be 0xC3 and the AID
0x010203040506C3 (but these can be easily modified). These details of the Custom component and its
length are listed in the Directory component of the CAP file and are presented in Table B.1.

custom_component_info {
u1 component_tag
u2 size
u1 AID_length
u1 AID[AID_length] }

Table B.1: Details of the Custom component

contract {
u2 provides_count
provides_info provides[provides_count]
u2 calls_count)
calls_infocalls[calls_count]
u2 secrules_count
secrules_info secrules[secrules_count] }

Table B.2: Structure of the Custom component Containing Contract

The scheme of the contract is illustrated in Table B.2. The order of the contract attributes is expected
to be: Provides, Calls, sec.rules. Thus we just add the number of corresponding elements before each
attribute. Elements of each attribute have different structures, that are provided in Table B.3 (we use
structures and naming that are similar to the ones defined for CAP files, there u1 corresponds to
1 byte and u2 corresponds to 2 bytes). The contract is just a byte array, but specifying structures
corresponding to each entry allows us to perform the contract extraction efficiently.

Functionally necessary services are a subset of called services: func.rulesA ⊆ CallsA, thus just tag
necessary services among the called ones. The value of funcrules_tag is set to 0x01 if the service
should be listed in func.rules. Otherwise the tag value should be 0x00.

B.1.3 Contract Population

Following are the rules for contract population.

• Provided Services. A service is required to be listed in the Provides set if it is a method of an
interface extending Shareable. A service is listed in Provides array as a pair 〈I, t〉, where I is the
Export file token for shareable interface and t is the Export file token for the method (1 byte
each).

D6.5 Prototypes companion report | version 1.0 | page 34 / 39

provides_info {
u1 interface_token
u1 service_token }

calls_info {
u1 interface_token
u1 service_token
u1 server_AID[16]
u1 funcrules_tag }

secrules_info {
u1 client_AID[16]
u1 secrules_applet_count
secrules_applet_info secrules_applet[secrules_applet_count] }

secrules_applet_info {
u1 interface_token
u1 service_token }

Table B.3: Contract Attributes Structures in the Contract Custom component

• Called and Functionally Necessary Services. An application provider should list a service (be-
longing to another package) in the Calls set, if an invocation of this service is present in the
code of the applet. A service from a package with AID XXX is listed in the contract as
〈XXX, I, t, funcrules_tag〉, where funcrules_tag tags if this service is also functionally necessary
or not. For optimization purposes, the Calls set is then restructured to separate services provided
by different servers. The AIDs are space-consuming objects (can take up to 16 bytes) and
avoiding their repetitions where possible can bring significant space savings.

• Authorization Rules. An authorization rule is listed in the sec.rules set as a pair containing the
service details (defined as a provided service) and the authorized client package AID. Thus
the structure is the same as for a called service, with a difference that no tag for functionality is
needed: 〈AID, I, t〉. Then the same optimization strategy as for called services is applied.

The CAP file is in fact a JAR archive with a known structure. In order to embed the contract created
by these rules and in compliance with the structure from Table B.2, our CAP Modifier takes the CAP
file generated with the standard Java Card tools and appends the Contract Custom component within
it, modifying the Directory component accordingly (as the specification requires).

The CAP Modifier GUI screen-shot is presented on Figure B.1, it depicts an existing contract and
the options that users of the CAP Modifier tool have. The user can choose to add services to Provides,
Calls/func.rules and sec.rules sets, then the dialog will appear where the user can insert the necessary
AID and tokens. When the contract is ready it can be saved for future usage. The contract can also be
embedded into the chosen CAP file, and then the CAP modifier can generate the scripts necessary to
communicate the CAP file to the card.

B.2 An Example

We have conducted an extensive functionality testing of the S×C prototypes using the 4 applications of
the integrated WP6 scenario (see D6.6 for more details). Figure B.2 depicts an example of a contract
for the NewMyApplet application created in the CAP Modifier tool. This contract is faithful (compliant
with the application code). It declares that the NewMyApplet application provides one service, calls
two services from the NewEPurse application and one service from the NewEidCard application, and
authorizes the NewEPurse application to call its own provided service.

Figure B.3 presents a compliant contract for the NewEPurse applet. It contains the tokens of 3
provided services and the authorizations for the NewJTicket, NewEidCard and NewMyApplet applets to

D6.5 Prototypes companion report | version 1.0 | page 35 / 39

Figure B.1: User Interface of CAP modifier

access its services. Similarly, Figures B.4-B.5 present examples of contracts for applets NewJTicket
and NewEidCard correspondingly. We note that the contract of the applet NewJTicket contains a service
that is actually listed as a functionally necessary service.

Table B.4 presents the sizes of the CAP files used in the WP6 integrated scenario without contracts
and the corresponding sizes of the Contract custom components.

Applet Original CAP file Size of the contract Overhead (%)
without contract (Bytes) (Bytes)

NewEPurse 4613 176 +3,8%
NewJTicket 3263 22 +0,6%

NewMyApplet 4778 58 +1,2%
NewEidCard 11541 37 +0,3%

Table B.4: CAP files sizes with and without contracts

B.3 Using the S×C Prototype for Testing

The S×C prototype for testing exists as a set of scripts that can be run on any Windows PC. The only
requirement for the prototype user is to download the Java Card Development Kit 2.2.2 from the Oracle
web site (it’s free) and have the Java Run-time Environment installed. The variables JAVA_HOME and
JC_HOME have to be set to denote the paths to the JRE and the JCRE tools correspondingly.

D6.5 Prototypes companion report | version 1.0 | page 36 / 39

Figure B.2: A Contract for NewMyApplet

Figure B.3: A Contract for NewEPurse

D6.5 Prototypes companion report | version 1.0 | page 37 / 39

Figure B.4: A Contract for NewJTicket

Figure B.5: A Contract for NewEidCard

D6.5 Prototypes companion report | version 1.0 | page 38 / 39

Any interested person can try to use the S×C prototype for testing. The CAP files for testing the
prototypes can be created with the help of the Eclipse JCWDE plug-in or the Java Card NetBeans
plug-in, or the CAP files of the WP6 integrated scenario applets can be used.

The scripts to run the S×C prototype for testing run seamlessly the Java Card Development Kit
tools. In the beginning the card simulation is initialized with just the PolicyStore applet deployed. The
user is then required to embed the contract into the selected CAP file, place the selected CAP file
into the folder with the S×C scripts and type the name of the selected CAP file in the command
line. It is possible to run a simulation of a CAP file loading, removal or an application policy update.
Depending on the chosen option the evolution will either be performed, or, in case of a non-compliant
evolution attempt, an error will be reported to the user. We provide the user guide together with the
S×C prototype for testing.

D6.5 Prototypes companion report | version 1.0 | page 39 / 39

	Document change record
	Executive summary
	Introduction
	EVe-TCF: Transitive Control Flow Prototype for Smart Cards
	Overview of EVe-TCF
	From development to deployment of JavaCard applications
	Considerations for on-device integration

	Off-device embedding of transitive control flow policies
	The DSL language for transitive control flow policies
	The convert tool
	The TCF component

	On-device verification of embedded policies
	Installation of a new package
	Removal of an installed package

	On-device management of policies
	The POPS case study

	The Security-by-Contract Prototype
	An Overview of the SxC Prototypes
	Embedding Contracts
	The S—-C Workflows on Device

	The S—-C Embeddable Prototype Architecture
	The Claim Checker Algorithm
	The On-card Policy Store
	The Policy Checker

	The Prototype for Testing

	Conclusion
	The Device Architecture
	The Security-by-Contract Prototype Details
	Embedding Contracts
	Application Contract
	The Contract Delivered on the Card
	Contract Population

	An Example
	Using the S—-C Prototype for Testing

